submaster/requirements.txt
Cesar Mendivil c22767d3d4 Refactor SRT to Kokoro synthesis script for improved CLI functionality and compatibility
- Updated `srt_to_kokoro.py` to provide a CLI entrypoint with argument parsing.
- Enhanced error handling and logging for better user feedback.
- Introduced a compatibility layer for legacy scripts.
- Added configuration handling via `config.toml` for endpoint and API key.
- Improved documentation and comments for clarity.

Enhance PipelineOrchestrator with in-process transcriber fallback

- Implemented `InProcessTranscriber` to handle transcription using multiple strategies.
- Added support for `srt_only` flag to return translated SRT without TTS synthesis.
- Improved error handling and logging for transcriber initialization.

Add installation and usage documentation

- Created `INSTALLATION.md` for detailed setup instructions for CPU and GPU environments.
- Added `USAGE.md` with practical examples for common use cases and command-line options.
- Included a script for automated installation and environment setup.

Implement SRT burning utility

- Added `burn_srt.py` to facilitate embedding SRT subtitles into video files using ffmpeg.
- Provided command-line options for style and codec customization.

Update project configuration management

- Introduced `config.py` to centralize configuration loading from `config.toml`.
- Ensured that environment variables are not read to avoid implicit overrides.

Enhance package management with `pyproject.toml`

- Added `pyproject.toml` for modern packaging and dependency management.
- Defined optional dependencies for CPU and TTS support.

Add smoke test fixture for SRT

- Created `smoke_test.srt` as a sample subtitle file for testing purposes.

Update requirements and setup configurations

- Revised `requirements.txt` and `setup.cfg` for better dependency management and clarity.
- Included installation instructions for editable mode and local TTS support.
2025-10-25 00:00:02 -07:00

61 lines
1.8 KiB
Plaintext

# Dependencias de alto nivel para instalar todo lo necesario en el proyecto
# Instalar con:
# python -m pip install -r requirements.txt
# IMPORTANT: This requirements file targets CPU-only installations.
# For packages that provide GPU vs CPU wheels (notably `torch`), we
# recommend installing the CPU builds explicitly. Example recommended
# command to install CPU-only PyTorch:
#
# python -m pip install torch --index-url https://download.pytorch.org/whl/cpu
#
# If you prefer to keep everything in one step, run:
#
# python -m pip install --index-url https://download.pytorch.org/whl/cpu -r requirements.txt
# Core
python-dateutil
numpy
# Audio / multimedia
ffmpeg-python
av
soundfile
librosa
# Transcripción / modelos
# Recomendado: instalar la build CPU de torch usando el índice oficial
# de PyTorch (ver comentario arriba). No forzamos la URL aquí para
# mantener compatibilidad, pero si instalas desde este fichero y no
# quieres GPU, usa el comando recomendado.
torch==2.2.2
# faster-whisper: versión probada en este entorno
faster-whisper==1.2.0
transformers==4.34.0
tokenizers==0.13.3
sentencepiece==0.1.99
huggingface-hub==0.16.4
# Traducción
sacremoses==0.0.53
ctranslate2==3.18.0
# ONNX Runtime (CPU). Si necesitas GPU, instala la variante apropiada.
onnxruntime==1.15.1
# TTS (Coqui TTS and fallbacks)
TTS==0.13.0
pyttsx3==2.90
# Networking / utils
requests==2.31.0
tqdm==4.66.1
coloredlogs==15.0.1
humanfriendly==10.0
flatbuffers==23.5.26
# Notas:
# - He fijado versiones compatibles con Python 3.11 y enfoque CPU. Si prefieres
# otras versiones o quieres soporte GPU, dime y actualizo los pins.
# - Para `torch` en CPU, usa el índice oficial de PyTorch como se muestra arriba.
# - `TTS` (Coqui) puede descargar modelos en la primera ejecución; consulta la
# documentación de Coqui para descargar modelos offline si lo deseas.