- Updated `srt_to_kokoro.py` to provide a CLI entrypoint with argument parsing. - Enhanced error handling and logging for better user feedback. - Introduced a compatibility layer for legacy scripts. - Added configuration handling via `config.toml` for endpoint and API key. - Improved documentation and comments for clarity. Enhance PipelineOrchestrator with in-process transcriber fallback - Implemented `InProcessTranscriber` to handle transcription using multiple strategies. - Added support for `srt_only` flag to return translated SRT without TTS synthesis. - Improved error handling and logging for transcriber initialization. Add installation and usage documentation - Created `INSTALLATION.md` for detailed setup instructions for CPU and GPU environments. - Added `USAGE.md` with practical examples for common use cases and command-line options. - Included a script for automated installation and environment setup. Implement SRT burning utility - Added `burn_srt.py` to facilitate embedding SRT subtitles into video files using ffmpeg. - Provided command-line options for style and codec customization. Update project configuration management - Introduced `config.py` to centralize configuration loading from `config.toml`. - Ensured that environment variables are not read to avoid implicit overrides. Enhance package management with `pyproject.toml` - Added `pyproject.toml` for modern packaging and dependency management. - Defined optional dependencies for CPU and TTS support. Add smoke test fixture for SRT - Created `smoke_test.srt` as a sample subtitle file for testing purposes. Update requirements and setup configurations - Revised `requirements.txt` and `setup.cfg` for better dependency management and clarity. - Included installation instructions for editable mode and local TTS support.
60 lines
1.7 KiB
Plaintext
60 lines
1.7 KiB
Plaintext
# Dependencias comunes del paquete `whisper_project`.
|
|
# Este fichero está orientado a instalaciones en CPU. Algunas librerías
|
|
# publican ruedas separadas para GPU y CPU (p.ej. `torch`). Para forzar
|
|
# la instalación CPU de PyTorch ejecuta:
|
|
#
|
|
# python -m pip install torch --index-url https://download.pytorch.org/whl/cpu
|
|
#
|
|
# O bien instala todo de una vez usando el índice CPU:
|
|
#
|
|
# python -m pip install --index-url https://download.pytorch.org/whl/cpu -r whisper_project/requirements.txt
|
|
#
|
|
# Luego instala el resto de dependencias con:
|
|
# python -m pip install -r whisper_project/requirements.txt
|
|
#
|
|
# Si deseas GPU en el futuro, instala la rueda apropiada de PyTorch
|
|
# para tu versión de CUDA y, si procede, elimina el uso del índice CPU.
|
|
#
|
|
# Este archivo lista las librerías que el código del proyecto puede usar.
|
|
# Instalar en el virtualenv del proyecto con:
|
|
# python -m pip install -r whisper_project/requirements.txt
|
|
|
|
# Core / audio
|
|
torch==2.2.2
|
|
numpy==1.26.4
|
|
ffmpeg-python==0.4.0
|
|
|
|
# Transcripción y modelos
|
|
faster-whisper==1.2.0
|
|
transformers==4.34.0
|
|
tokenizers==0.13.3
|
|
sentencepiece==0.1.99
|
|
huggingface-hub==0.16.4
|
|
|
|
# Traducción (Marian / transformers)
|
|
sacremoses==0.0.53
|
|
|
|
# TTS (opcional: Coqui TTS o fallbacks)
|
|
TTS==0.13.0
|
|
soundfile==0.12.1
|
|
librosa==0.10.0.post2
|
|
pyttsx3==2.90
|
|
|
|
# HTTP / utilidades
|
|
requests==2.31.0
|
|
tqdm==4.66.1
|
|
|
|
# Dependencias instaladas por `faster-whisper` en algunos entornos
|
|
onnxruntime==1.15.1
|
|
ctranslate2==3.18.0
|
|
av==10.0.0
|
|
coloredlogs==15.0.1
|
|
humanfriendly==10.0
|
|
flatbuffers==23.5.26
|
|
|
|
# Nota: estos pins se eligieron para compatibilidad con Python 3.11
|
|
# y uso en CPU. Si prefieres versiones distintas (p.ej. ruedas GPU de
|
|
# `torch`), indícamelo y actualizo los pins o añado instrucciones
|
|
# para instalar desde índices alternativos.
|
|
|