submaster/whisper_project/requirements.txt
Cesar Mendivil c22767d3d4 Refactor SRT to Kokoro synthesis script for improved CLI functionality and compatibility
- Updated `srt_to_kokoro.py` to provide a CLI entrypoint with argument parsing.
- Enhanced error handling and logging for better user feedback.
- Introduced a compatibility layer for legacy scripts.
- Added configuration handling via `config.toml` for endpoint and API key.
- Improved documentation and comments for clarity.

Enhance PipelineOrchestrator with in-process transcriber fallback

- Implemented `InProcessTranscriber` to handle transcription using multiple strategies.
- Added support for `srt_only` flag to return translated SRT without TTS synthesis.
- Improved error handling and logging for transcriber initialization.

Add installation and usage documentation

- Created `INSTALLATION.md` for detailed setup instructions for CPU and GPU environments.
- Added `USAGE.md` with practical examples for common use cases and command-line options.
- Included a script for automated installation and environment setup.

Implement SRT burning utility

- Added `burn_srt.py` to facilitate embedding SRT subtitles into video files using ffmpeg.
- Provided command-line options for style and codec customization.

Update project configuration management

- Introduced `config.py` to centralize configuration loading from `config.toml`.
- Ensured that environment variables are not read to avoid implicit overrides.

Enhance package management with `pyproject.toml`

- Added `pyproject.toml` for modern packaging and dependency management.
- Defined optional dependencies for CPU and TTS support.

Add smoke test fixture for SRT

- Created `smoke_test.srt` as a sample subtitle file for testing purposes.

Update requirements and setup configurations

- Revised `requirements.txt` and `setup.cfg` for better dependency management and clarity.
- Included installation instructions for editable mode and local TTS support.
2025-10-25 00:00:02 -07:00

60 lines
1.7 KiB
Plaintext

# Dependencias comunes del paquete `whisper_project`.
# Este fichero está orientado a instalaciones en CPU. Algunas librerías
# publican ruedas separadas para GPU y CPU (p.ej. `torch`). Para forzar
# la instalación CPU de PyTorch ejecuta:
#
# python -m pip install torch --index-url https://download.pytorch.org/whl/cpu
#
# O bien instala todo de una vez usando el índice CPU:
#
# python -m pip install --index-url https://download.pytorch.org/whl/cpu -r whisper_project/requirements.txt
#
# Luego instala el resto de dependencias con:
# python -m pip install -r whisper_project/requirements.txt
#
# Si deseas GPU en el futuro, instala la rueda apropiada de PyTorch
# para tu versión de CUDA y, si procede, elimina el uso del índice CPU.
#
# Este archivo lista las librerías que el código del proyecto puede usar.
# Instalar en el virtualenv del proyecto con:
# python -m pip install -r whisper_project/requirements.txt
# Core / audio
torch==2.2.2
numpy==1.26.4
ffmpeg-python==0.4.0
# Transcripción y modelos
faster-whisper==1.2.0
transformers==4.34.0
tokenizers==0.13.3
sentencepiece==0.1.99
huggingface-hub==0.16.4
# Traducción (Marian / transformers)
sacremoses==0.0.53
# TTS (opcional: Coqui TTS o fallbacks)
TTS==0.13.0
soundfile==0.12.1
librosa==0.10.0.post2
pyttsx3==2.90
# HTTP / utilidades
requests==2.31.0
tqdm==4.66.1
# Dependencias instaladas por `faster-whisper` en algunos entornos
onnxruntime==1.15.1
ctranslate2==3.18.0
av==10.0.0
coloredlogs==15.0.1
humanfriendly==10.0
flatbuffers==23.5.26
# Nota: estos pins se eligieron para compatibilidad con Python 3.11
# y uso en CPU. Si prefieres versiones distintas (p.ej. ruedas GPU de
# `torch`), indícamelo y actualizo los pins o añado instrucciones
# para instalar desde índices alternativos.